编写教案也是我们上课之前的一项重要准备工作,教案在制订的时候,我们肯定要强调文字表述规范,高中范文网小编今天就为您带来了六年级苏教版数学上册教案5篇,相信一定会对你有所帮助。
六年级苏教版数学上册教案篇1
教学要求:
1、使学生理解除数是小数的除法的计算方法,初步学会除数是小数的除法计算方法,能正确地进行计算。
2、培养学生应用已经学过的知识解决新问题的能力,初步认识转化的思想和方法。
教学过程:
一、复习铺垫
1、口算下面各题。
3.286.337.555.64
0.3280.6330.7550.564
提问:商的小数点位置是怎样确定的?
指出:小数除以整数,按整数除法算,商的小数点要和被除数的小数点对齐。
2、提问:
(1)除数扩大了10倍,要使商不变,被除数应该怎样?除数扩大了100倍呢?
(2)把13.8、4.67、0.725的小数点去掉,和原来的数相比,各扩大了多少倍?
(3)把5.344扩大10倍,小数点应该向哪边移几位?要扩大1000倍呢?
3、引入新课。
我们已经知道,被除数和除数扩大相同的倍数,商不变。(板书:被除数和除数扩大相同的倍数)而且也知道,把小数点向右移动一位、两位、三位。.。.。.原来的数就扩大10倍、100倍、1000倍。.。.。.今天就要应用这两方面的知识来继续学习小数除法。
二、教学新课
1、出示例4。
学生读题。
提问:求平均每小时织多少米要怎样算?(板书算式)
提问:这道除法计算题和上节课学习的除法计算题,有什么不同的地方?(板书课题)
先启发学生思考:我们已经学会了除数是整数的小数除法。这道题的除数是小数,能不能依据过去的知识,把除数是小数的除法转化成除数是整数的除法来计算呢?让学生先作讨论,并在全班交流。
您现在正在阅读的冀教版《除数是小数的除法》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!冀教版《除数是小数的除法》教学设计现在再来说一说:怎样才能使除数变成整数?(把除数扩大10倍,要使商不变,也就是要得出原来的商,被除数应该怎样?(被除数也应该扩大10倍)教师在竖式中作出示范。结合说明:要把除数7.5扩大10倍,就是把除数的小数点向右移动一位,除数就变成整数了。为了简便,只要把除数7.5的小数点划去。除数扩大了10倍,要使商变,被除数47.85也要扩大10倍,只要把原来的小数点划去,向右移一位重新点上小数点,使被除数变成478.5。
追问:怎样把刚才的题转化成除数是整数的除法的?这样做的根据是什么?
评析:这里的例题教学先引出转化成除数是整数的除法这一问题,启发学生依据旧知萌生相除方法的动机,再让学生在讨论中明确怎样转化,弄清转化的依据,这就不仅让学生找到解决问题的方法,而且使学生明确算理,增强应用旧知解决新问题的能力,初步认识转化的思想。]
提问:这题转化后,现在变成多少除以多少了?这样的题在会计算了吗?让学生把这道题做完后,教师检查学生在计算时,要注意说明商的小数点要和转化后的被除数的小数点对齐。
提问:除数是小数的除法要转化成怎样的除法再计算?是怎样转化的?把被除数和除数扩大相同的倍数,只要把小数点怎样移动?(在前面板书后接着板书:吟小数点同时向右移动)如果被除数不是47.85,而是4.785,除数仍是7.5(板书:
7.5)4.785)怎样把它们转化成除数是整数的除法?如果被除数是47.85,除数是0.75呢?(板书:0.75)47.85一)提问:你认为计算除数是小数的除法,关键是什么?(小数点的处理)怎样移动小数点后再计算?
2、进行转化的专项训练。
(1)做练一练中的第1题。
(2)小结:把除数是小数的除法转化成除数是整数的除法的方法是:第一步,把除数中的小数点划去,使它变成整数;第二步,看除数扩大了多少倍,就把被除数也扩大同样的倍数,只要把被除数的小数点向右移动若干位。这样,就可以按照除数是整数的除法进行计算了。
三、巩固练习
1、试做练一练中的第2题。
学生练习时,教师注意学生在转化时被除数和除数是否扩大相同的倍数,竖式中没有用的o是否划去。评讲时,再让学生说一说是怎样把除数是小数的除法转化成除数是整数的除法的。
2、让学生将练习十的第2题、第4题做在课堂作业本上。
四、课堂小结
这节课学习了什么内容?除数是小数的除法要怎样算?这样算的根据是什么?你认为计算过程中的关键是什么?
五、家庭作业
练习十第3题。
六年级苏教版数学上册教案篇2
?教学目标】
1、在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2、会正确地读、写正、负数,知道0既不是正数,也不是负数。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
?教学重点】
负数的意义和负数的读法与写法。
?教学难点】
理解0既不是正数,也不是负数。
?教学过程】
一、激发兴趣,导入新课
游戏:《我变,我变,我变变变》
老师说一句话,请同学们说出一句和它意思相反的话。
二、创设情境、学习新知
1、教学例1。
(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。
你能用自己的方法来表示这两个温度吗?
学生思考后反馈,教师适时点拨、评价和引导。
教师小结:
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第123页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2、自主学习例2。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。
(2)巩固练习:课本第124页试一试。
教师巡视,集体订正。
3、小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
学生交流、讨论。
指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写,负号可以不写吗? 为什么?
三、巩固练习,深化认识
1、课堂活动:1、2题。
①读一读,议一议。
学生齐读,巩固负数的读法。
②根据题中的信息,说一说三个班的答题情况。
学生讨论交流,并说出理由。
2、练习二十五:1、3题。
独立练习,反馈交流。
四、联系生活,拓展运用
说一说:生活中哪些地方还会用到负数。
六年级苏教版数学上册教案篇3
教学内容:
教科书第81、82页练习十五第6-11题。
教学目标:
1、进一步理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,并能根据运算律和运算性质进行一些分数的简便运算。
2、在学习分数四则混合运算的过程中,进一步积累数学学习的经验,用分数四则混合运算解决一些实际问题。
教学重、难点:
根据整数的运算律和运算性质对分数四则混合运算进行简便计算。
教学措施:
设计相应的计算题和实际问题,关注学习困难生的学习情况。
教学准备:
教学光盘及补充题
教学过程:
一、基本练习
1、练习十五第6题。
学生先回忆等式的性质,指名说一说。
观察每个方程,说说方程的特点。
提示:都要把方程的左边进行化简,再应用等式的性质求方程的解。
学生独立解每个方程,指名板演,进行讲评,提醒学生自觉进行检验。
2、计算下列各题,能简算的要简算。
(7/83)×(7/10+1/5) (2/5+1/3)÷4/5+3/4
3/10÷[1/2×(2/5+4/5)] 7/16÷1/1016÷1/9
(16÷5/12)×7/6 (4/25×99+4/25)÷1/8
学生独立计算,每人任选三题,同时指名学生板演。
教师结合学生板演情况进行讲评并及时总结分数四则混合运算的运算顺序。
3、练习十五第8题。
(1)图中告诉我们哪些信息,你会计算梯形的面积吗?
(2)学生独立列式计算,任选一题。
4、练习十五第9-11题。
(1)分析第9题,学生先读题并列出算式,然后请学生说说解题思路。
(2)分析第10题,先说说数量关系再列算式,要让学生明白要求两个小队平均每人采集树种多少千克,先要算这两个小队一共采集树种的千克数和这两个小队的总人数。
(3)分析第11题,解决每一问时鼓励学生说数量关系并注意第2小题与第3小题之间的联系。
二、拓展练习
解决实际问题:
1、一个食堂,星期一用去煤气7/4立方米,星期二用去煤气3/2立方米,两天用的煤气量占本周计划用气量的3/8。这一周计划用多少立方米煤气?
2、工程队运来黄沙9/2吨,运来的水泥比黄沙重量的2/3少1/5吨。黄沙和水泥一共运来多少吨?
3、小华看一本120页的故事书,前3天看了总页数的3/4,后2天准备按1:2看完剩下的页数,最后一天要看多少页?
三、全课总结
进行分数四则混合运算时不仅要注意运算顺序,还要注意分数加、减法与分数乘、除法的计算方法的不同,必须看清什么时候需要通分,什么时候需要先约分再计算;解决实际问题时要认真读题,分析数量关系再列式解答。
四、布置作业
练习十五第7、9、10、11题。
六年级苏教版数学上册教案篇4
实践要求:
1、经历有目的、有设计、有步骤、有合作的实践活动。
2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
教学内容:
冀教版小学数学六年级上册69——70页。
教学目标:
1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。
2、数学思考:如何对自己设计的理财方案作出合理的解释。
3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。
4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。
教学重点:
学会理财,会对自己设计的理财方案作出合理的解释。
教学难点:
对自己设计的理财方案作出合理的解释。
教学流程:
一、导入
老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。
{设计意图:通过和学生谈话,轻松引入本节课的课题}
二、任务??
设计方案,解决问题
聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)
(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)
(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)
(3)议一议:你认为那种存钱方案?为什么?
{设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}
三、小组汇报、展示
{在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}
四、任务二
聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。
零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。
(1)计算聪聪家每个月的结余。
(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。
(3)按照你的存钱计划,算一下,到期能取回多少钱?
知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。
其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
五、分享收获
{设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}
六、课下作业
为自己的零花钱制定一个零存整取的存钱计划。
{设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}
板书设计:
收入:2160+4180=6340(元)
支出:2500+800+200+160+30=3690(元)
结余:6340—3690=2650(元)
六年级苏教版数学上册教案篇5
教学目标
1.理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。
2.浸透事物是相互联系、相互转化的辩证唯物主义观点。
教学重点
分数乘以整数的意义及计算方法。
教学难点
分数乘以整数的计算法则的推导。
教具准备
1.自制两套三层复式投影片。
2.投影图片3张。
教学过程设计
(一)复习
(出示投影一)
1.口算:
问:怎样计算?(分母不变分子相加。)
2.根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12+12或125
(2)14+14+14或143
题中的两个式子哪个简便?(125,143)
它们各表示什么意思呢?(5个12是多少? 3个14是多少?)
能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗?
(二)讲授新课
1.分数乘以整数的意义。
多少块?(投影)
2份。)
听回答,老师边重复边投影(三层复式投影片)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)
问:为什么?(三个加数相同。)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题)
师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数
练一练(投影片二)
①看图写算式。
②根据意义列式。
③看算式说意义。
2.分数乘以整数的法则。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
①导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)
该怎么办呢?
引导学生讨论得出:
边加上虚线框。)
(2)根据上面方法试算下面各题。
(学生在练习本上做,用投影反馈。)
②归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
③应用法则计算。
有不一样的吗?强调结果化成带分数。
还有不同的做法吗?
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习
1.看图写算式。
第3页的第1题,看图写算式。(填书上)
行间巡视,注意:被乘数和乘数的位置。
2.先说算式意义,再填空。
3.看算式,约分计算。
4.口算:
5.判断:(打手势)
(四)课堂总结
今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)
课堂教学设计说明
1.确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。
2.依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握分数乘以整数的意义与整数乘法意义相同。同时复习分数加法,为推导公式进行铺垫。
3.重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。
会计实习心得体会最新模板相关文章: