高中范文网 >教学计划

一元二次方程教案6篇

实用的教案应该结合实际的教学时间和学科要求,合理安排教学任务和学习进度,通过编写教案,我们能够更好地展示自己的教学思路和方法,提升教学的质量和效果,高中范文网小编今天就为您带来了一元二次方程教案6篇,相信一定会对你有所帮助。

一元二次方程教案6篇

一元二次方程教案篇1

?教材分析】

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

?教学目标】

1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。

2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。

?教学重点与难点】

理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。

?教法、学法】

因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

?教学过程】

一、复习旧知,类比新知

1、一元一次方程的概念

像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

2、一般形式:

是常数且

设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

二、生活情境,自主学习

(1)正方形桌面的面积是2m

,设正方形桌面的边长是x m,可得方程

(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,

设花圃的宽是x m则花圃的长是m,

可得方程

(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程

(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程

设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

三、探究学习:

1、概念得出

讨论交流:以上所列方程有哪些共同特征?

设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。

2、巩固概念

下列方程中那些是一元二次方程。

设计意图:

这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解,题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性。

3、一元二次方程的一般形式:

设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.

4.典型例题

例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

设计意图:此题设置的目的在于加深学生对一般形式的理解。

5.巩固练习

把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

设计意图:此题设置的目的在于加深学生对一般形式的理解

6、拓展应用

(1)、若是关于x的一元二次方程,则( )

a、p为任意实数b、p=0 c、p≠0 d、p=0或1

(2)、若关于x的方程mx

-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

(3)、若方程是关于x的一元二次方程,则m的值为

设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

7.课堂小结

设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

?课后作业】

1、下列方程中哪些是一元二次方程?试说明理由。

2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

一元二次方程教案篇2

知识点:

二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法

重点、难点:

二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法

教学形式:

例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!

1、自我介绍:30s

大家下午好!我叫xxx,20xx年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!

2、一元二次方程概念、系数、根的判别式:8min30s

我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:

(1)x-10x+9=0是1-109

(2)x+2=0是102

(3)ax+bx+c=0不是a必须不等于0(追问为什么)

(4)3x-5x=3x不是整理式子得-5x=0所以为一元一次方程(追问为什么)好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!

一元:只含一个未知数

二次:含未知数项的最高次数为2

方程:一个等式

一元二次方程的一般形式为:ax+bx+c=0(a≠0)其中,a为二次项系数、b为一次项系数、c为常数项。记住,a一定不为0,b、c都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式!至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δt;0时,方程无实根。那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。

3、一元二次方程的解法:20min

那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理

(1)直接开方法

遇到形如x=n的二元一次方程,可以直接使用开方法来求解。若nt;0,方程无解;若n=0,则x=0,若n>0,则x=±n。同学们能明白吗?

(2)配方法

大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:

简单的一眼看出来的:x-2x+1=0(x-1)=0(让同学回答)

需要变换的:2x+4x-8=0

步骤:将二次项系数化为1,左右同除2得:x+2x-4=0

将常数项移到等号右边得:x+2x=4

左右同时加上一次项系数一半的平方得:x+2x+1=4+1

所以有方程为:(x+1)=5形似x=n

然后用直接开平方解得x+1=±5x=±5-1

大家能听懂吗?现在我们一起来做一道练习题,2min时间,大家一起报个答案给我!

题目:1/2x-5x-1=0答案:x=±+5

大家都会做吗?还需要讲解详细步骤吗?

(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc,没有公式法求不出来的解,当然啦,除非是无解~

首先,公式法里面的公式大家还记得吗?

x=(-b±2-4ac)/2a

这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。我们来做一道简单的例题:

3x-2x-4=0

其中a=3,b=-2,c=-4

带入公式得:x=((-(-2))±2)2-4x(-4)(2x3)

化简得:x1=(1-)/3x2=(1+)/3

同学们你们解对了吗?

使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~

(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!

简单来说,因式分解就是将多项式化为式子的乘积形式。

比如说ab+ab可以化成ab(1+a)的`乘积形式。

那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0这样就可以解出x=-a/mx=-b/n

我们一起做一个例题巩固一下:4x+5x+1=0

则可以化成4x+x+4x+1=0x(4x+1)+(4x+1)=0(x+1)(4x+1)=0

所以有x=-1x=4

同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。练习题:x-5x+6=0x=2x=3

x-9=0x=3x=-3

4、总结:1min

好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc系数,会用Δ=b-4ac来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!

一元二次方程教案篇3

教学目标

(1)理解一元二次方程的概念

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程

教学重点

一元二次方程的概念、一元二次方程的一般形式

教学难点

因式分解法解一元二次方程

教学过程

(一)创设情景,引入新课

实际例子引入:列出的方程分别为x-7x+8=0,(x-7)(x+1)=89,x+8x-9=0

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

3:讲解例子

4:利用因式分解法解一元二次方程

5:讲解例子

6:一般步骤

(三)小结

(四)布置作业

一元二次方程教案篇4

学习目标

1、一元二次方程的求根公式的推导

2、会用求根公式解一元二次方程.

3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯

学习重、难点

重点:一元二次方程的求根公式.

难点:求根公式的条件:b2 -4ac≥0

学习过程:

一、自学质疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步骤是什么?

3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?

二、交流展示:

刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?

三、互动探究:

一般地,对于一元二次方程ax2+bx+c=0

(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法

由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.

(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4act;0时,方程没有实数解.就不必再代入公式计算了.

四、精讲点拨:

例1、课本例题

总结:其一般步骤是:

(1)把方程化为一般形式,进而确定a、b,c的值。(注意符号)

(2)求出b2-4ac的值.(先判别方程是否有根)

(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根.

例2、解方程:

(1)2x2-7x+3=0 (2) x2-7x-1=0

(3) 2x2-9x+8=0 (4) 9x2+6x+1=0

五、纠正反馈:

做书上第p90练习。

六、迁移应用:

例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.

例4、求方程 的两根之和以及两根之积

拓展应用:关于 的一元二次方程 的一个根是 ,则 ;

方程的另一根是

一元二次方程教案篇5

一、复习目标:

1、能说出一元二次方程及其相关概念,;

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

二、复习重难点:

重点:一元二次方程的解法和应用.

难点:应用一元二次方程解决实际问题的方法.

三、知识回顾:

1、一元二次方程的定义:

2、一元二次方程的常用解法有:

配方法的一般过程是怎样的?

3、一元二次方程在生活中有哪些应用?请举例说明。

4、利用方程解决实际问题的关键是。

在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。

四、例题解析:

例1、填空

1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.

2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.

3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

4、用配方法解方程x2+8x+9=0时,应将方程变形为()

a.(x+4)2=7b.(x+4)2=-9

c.(x+4)2=25d.(x+4)2=-7

学习内容学习随记

例2、解下列一元二次方程

(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

(3)(x+1)(2-x)=1(选择适当的方法解)

例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?

2、如图,在rt△acb中,∠c=90°,ac=6m,bc=8m,点p、q同时由a、b两点出发分别沿ac,bc方向向点c匀速运动,它们的速度都是1m/s,几秒后△pcq的面积为rt△acb面积的一半?

一元二次方程教案篇6

(一)引入新课

设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.

(由学生自己设未知数,列出方程).

问:所列方程是几元几次方程?由此引出课题.

(二)新课教学

1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:

这是一个关于x的一元二次方程.下面先复习一下列一元一次方程解应用题的一般步骤:

(1) 分析题意,找出等量关系,分析题中的数量及其关系,用字母表示问题里的未知数;

(2) 用字母的一次式表示有关的量;

(3) 根据等量关系列出方程;

(4) 解方程,求出未知数的值;

(5) 检查求得的值是否正确和符合实际情形,并写出答案.

列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤一样,只不过所列的方程是一元二次方程而非一元一次方程而已.

2、例题讲解

例1 在长方形钢片上冲去一个小长方形,制成一个四周宽相等的长方形框(如图111).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm,求这个长方形框的框边宽.

(三)分析:

(1)复习有关面积公式:矩形;正方形;梯形;三角形;圆.

(2)全面积=原面积 截去的面积 30

(3)设矩形框的框边宽为xcm,那么被冲去的矩形的长为(302x)cm,宽为(20-2x)cm,根据题意,得.

注意:方程的解要符合应用题的实际意义,不符合的应舍去.

例2 某城市按该市的.九五国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率.

分析:(1)什么是增长率?增长率是增长数与原来的基数的百分比,可用下列公式表示:

增长率=

何谓平均每年增长率?平均每年增长率是在假定每年增长的百分数相同的前提下所求出的每年增长的百分数.(并不是每年增长率的平均数)

有关增长率的基本等量关系有:

①增长后的量=原来的量(1+增长率),

减少后的量=原来的量(1--减少率),

②连续n次以相同的增长率增长后的量=原来的量(1+增长率);

连续n次以相同的减少率减少后的量=原来的量(1+减少率).

(2)本例中如果设平均每年增长的百分率为x,1995年的社会总产值为1,那么

1996年的社会总产值=

1997年的社会总产值= = .

根据已知,1997年的社会总产值= ,于是就可以列出方程:

3、巩固练习

p.152练习及想一想

补充:将进货单价为40元的商品按50元售出时,就能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少?

(四)课堂小结

善于将实际问题转化为数学问题,要深刻理解题意中的已知条件,严格审题,注意解方程中的巧算和方程两根的取舍问题.

会计实习心得体会最新模板相关文章:

四方程教学反思推荐5篇

解一元一次不等式组的教学反思5篇

6,7的减法教案大班教案精选6篇

安全教育教案初中教案6篇

小班教案认识水果教案6篇

端午节教案教案参考6篇

手工花教案大班教案6篇

中班教案保护眼睛教案参考6篇

小学安全教案教育教案优秀6篇

大班体育教案教案通用6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    67176

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。