心得体会可以帮助人们更好地理解自己和他人,通过心得体会,我们能够更清晰地认识自己,了解自己的优点和不足,高中范文网小编今天就为您带来了大数据心得通用7篇,相信一定会对你有所帮助。
大数据心得篇1
完成了这次的二元多项式加减运算问题的课程设计后,我的心得体会很多,细细梳理一下,有以下几点:
1、程序的编写中的语法错误及修改
因为我在解决二元多项式问题中,使用了链表的方式建立的二元多项式,所以程序的空间是动态的生成的,而且链表可以灵活地添加或删除结点,所以使得程序得到简化。但是出现的语法问题主要在于子函数和变量的定义,降序排序,关键字和函数名称的书写,以及一些库函数的规范使用,这些问题均可以根据编译器的警告提示,对应的将其解决。
2、程序的设计中的逻辑问题及其调整
我在设计程序的过程中遇到许多问题,首先在选择数据结构的时候选择了链表,但是链表的排序比较困难,特别是在多关键字的情况下,在一种关键字确定了顺序以后,在第一关键字相同的时候,按某种顺序对第二关键字进行排序。在此程序中共涉及到3个量数,即:系数,x的指数和y的指数,而关键字排是按x的指数和y的指数来看,由于要求是降幂排序且含有2个关键字,所以我先选择x的指数作为第一关键字,先按x的降序来排序,当x的指数相同时,再以y为关键字,按照y的指数大小来进行降序排列。
另外,我在加法函数的编写过程中也遇到了大量的问题,由于要同时比较多个关键字,而且设计中涉及了数组和链表的综合运用,导致反复修改了很长的时间才完成了一个加法的设计。但是,现在仍然有一个问题存在:若以0为系数的项是首项则显示含有此项,但是运算后则自动消除此项,这样是正确的。但是当其不是首项的时候,加法函数在显示的时候有0为系数的项时,0前边不显示符号,当然,这样也可以理解成当系数为0时,忽略这一项。这也是本程序中一个不完美的'地方。
我在设计减法函数的时候由于考虑不够充分就直接编写程序,走了很多弯路,不得不停下来仔细研究算法,后来发现由于前边的加法函数完全适用于减法,只不过是将二元多项式b的所有项取负再用加法函数即可,可见算法的重要性不低于程序本身。
3、程序的调试中的经验及体会
我在调试过程中,发生了许多小细节上的问题,它们提醒了自己在以后编程的时候要注意细节,即使是一个括号的遗漏或者一个字符的误写都会造成大量的错误,浪费许多时间去寻找并修改,总结的教训就是写程序的时候,一定要仔细、认真、专注。
我还有一个很深的体会就是格式和注释,由于平时不注意格式和注释这方面的要求,导致有的时候在检查和调试的时候很不方便。有的时候甚至刚刚完成一部分的编辑,结果一不注意,就忘记了这一部分程序的功能。修改的时候也有不小心误删的情况出现。如果注意格式风格,并且养成随手加注释的习惯,就能减少这些不必要的反复和波折。还有一点,就是在修改的时候,要注意修改前后的不同点在哪里,改后调试结果要在原有的基础上更加精确。
大数据心得篇2
这学期我们学习了数据库应用教程这门课,以前并不知道这门课是干什么的,也不懂得什么是数据库,通过这一学期的学习,虽然了解的不是非常多,但也有了初步的一点认识。现在我们要持续三天数据库实训。
我大概的明白数据库技术是处理信息,管理数据最有效的一种方法。它具有完善的数据管理功能,还具有操作方便,简单实用等特点。因为我是非计算机专业的学生,所以我学起来就感觉很难,在上第一堂课的时候,因为不了解,于是心里充满了对这门课的神秘感,在第一堂课上我听得很认真,我感觉它与其他的课程没有什么联系,不需要其它太多的知识,我想它可能是一门从头开始学的课,就没有太多的担忧,然而事实并不是我想的这样,随着时间的延长,我发现每一堂课都比前一堂课难,逐渐的我听得就越来越吃力,还好书上除了理论知识外还有很多例题和图片,这对我对知识的理解有很大的帮助。同时老师每堂课都用详细的'和书上相似的ppt,并且老师讲的非常细致,书上的每一个知识他都会仔细的给我们讲解,有时遇到比较难的问题他还会很耐心的讲解好几遍直到我们都明白了为止,有时候我们好多人都没有听,但只要有人听,她就会很认真的讲。现在很尴尬啊,做实训题的时候,老得翻书。很快这一学期马上就要结束了,数据库这一门课也很快就要结束了,但这一学期的学习让我知道了很多,尤其是老师的耐心,老师的敬业精神感动了我,每一次还在睡得正酣时就有不想去上课的冲动,但我都克服了,因为我想到老师从那么远来给我们上课,她能来,为什么我不能,所以每次我都会说服自己要好好上课。
这不仅仅对我的学习有很大的启示,更重要的是,她也告诉了我在以后的人生中如何去做事,如何去做人。再做任何事时都应该认真负责,任何一个人都应该被尊重。因为有人还是想听,所以每次有人说话时,老师就会说你可以不听,可以睡觉,但不能影响其他人听课。上次清明放假时,好多人想回家,所以大部分人都没有来,老师并没有生气,而是很理解我们,有时候当别人理解我们时,我们应该思考自己有没有去理解过他人,这是相互的,就像老师理解我们一样,我们也应该按时上课,尊重老师,理解老师。在老师同学们的帮助下,我也做完了作业。在这里我要谢谢老师同学们。
大数据心得篇3
“数据结构与算法课程设计”是计算机科学与技术专业学生的集中实践性环节之一,是学习“数据结构与算法”理论和实验课程后进行的一次全面的综合练习。其目的是要达到理论与实际应用相结合,提高学生组织数据及编写程序的能力,使学生能够根据问题要求和数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并用软件解决问题,培养良好的程序设计技能。
当初拿到这次课程设计题目时,似乎无从下手,但是经过分析可知,对于简单文本编辑器来说功能有限,不外乎创作文本、显示文本、统计文本中字母—数字—空格—特殊字符—文本总字数、查找、删除及插入这几项功能。于是,我进行分模块进行编写程序。虽然每个模块程序并不大,但是每个模块都要经过一番思考才能搞清其算法思想,只要有了算法思想,再加上c程序语言基础,基本完成功能,但是,每个模块不可能一次完成而没有一点错误,所以,我给自己定了一个初级目标:用c语言大体描述每个算法,然后经调试后改掉其中明显的错误,并且根据调试结果改正一些算法错误,当然,这一目标实现较难。最后,经过反复思考,看一下程序是否很完善,如果能够达到更完善当然最好。并非我们最初想到的算法就是最好的算法,所以,有事我们会而不得不在编写途中终止换用其他算法,但是,我认为这不是浪费时间,而是一种认识过程,在编写程序中遇到的问题会为我们以后编写程序积累经验,避免再犯同样的错误。但是,有的方法不适用于这个程序,或许会适用于另外一个程序。所以,探索的过程是成长的过程,是为成功做的铺垫。经过努力后获得成功,会更有成就感。
在课程设计过程中通过独立解决问题,首先分析设计题目中涉及到的数据类型,在我们学习的数据存储结构中不外乎线性存储结构及非线性存储结构,非线性存储结构中有树型,集合型,图型等存储结构,根据数据类型设计数据结点类型。然后根据设计题目的主要任务,设计出程序大体轮廓(包括子函数和主函数),然后对每个子函数进行大体设计,过程中错误在所难免,所以要经过仔细探索,对每个函数进行改进。
程序基本完成后,功能虽然齐全,但是程序是否完善(例如,输入数据时是否在其范围之内,所以加入判断语句是很有必要的)还需运行测试多次,如有发现应该对其进行改善,当然要在力所能及的前提下。
课程设计过程虽然短暂,但是使我深刻理解数据结构和算法课程对编程的重要作用,还有“数据结构与算法”还提供了一些常用的基本算法思想及算法的编写程序。通过独立完成设计题目,使我系统了解编程的基本步骤,提高分析和解决实际问题的能力。通过实践积累经验,才能有所创新。正所谓,良好的基础决定上层建筑。只有基本功做好了,才有可能做出更好的成果。
大数据心得篇4
本次课程设计,使我对《数据结构》这门课程有了更深入理解。《数据结构》是一门实践性较强课程,为了学好这门课程,必须在掌握理论知识同时,加强上机实践。
我课程设计题目是线索二叉树运算。刚开始做这个程序时候,感到完全无从下手,甚至让我觉得完成这次程序设计根本就是不可能,于是开始查阅各种资料以及参考文献,之后便开始着手写程序,写完运行时有很多问题。特别是实现线索二叉树删除运算时很多情况没有考虑周全,经常运行出现错误,但通过同学间帮助最终基本解决问题。
在本课程设计中,我明白了理论与实际应用相结合重要性,并提高了自己组织数据及编写大型程序能力。培养了基本、良好程序设计技能以及合作能力。这次课程设计同样提高了我综合运用所学知识能力。并对vc有了更深入了解。《数据结构》是一门实践性很强课程,上机实习是对学生全面综合素质进行训练一种最基本方法,是与课堂听讲、自学和练习相辅相成、必不可少一个教学环节。上机实习一方面能使书本上知识变“活”,起到深化理解和灵活掌握教学内容目;另一方面,上机实习是对学生软件设计综合能力训练,包括问题分析,总体结构设计,程序设计基本技能和技巧训练。此外,还有更重要一点是:机器是比任何教师更严厉检查者。因此,在“数据结构”学习过程中,必须严格按照老师要求,主动地、积极地、认真地做好每一个实验,以不断提高自己编程能力与专业素质。
通过这段时间课程设计,我认识到数据结构是一门比较难课程。需要多花时间上机练习。这次程序训练培养了我实际分析问题、编程和动手能力,使我掌握了程序设计基本技能,提高了我适应实际,实践编程能力。总来说,这次课程设计让我获益匪浅,对数据结构也有了进一步理解和认识。
大数据心得篇5
有人说现在是读图时代,除去小说、心灵鸡汤以外,现在的畅销书基本都有图片,这本书是一个特例(书里唯一的图是出品方湛庐文化做的)
首先尝试解析一下作者的三大观点,这三大观点是大数据业者很喜欢引用的三句话:
1 不是随机样本,而是全体数据
我想所有人都能意识到对全体数据的分析优于对随机样本的分析,但在现实中我们经常拿不到全体数据:一是对象的特性:比如炸弹的威力,你不可能把所有炸弹都炸掉来得到全体数据;二是数据的收集方法,每一种方法都有适用的范围,不太可能包罗万象;三是数据分析的角度,战斗机只能统计到飞回来的飞机上的弹孔,而坠毁的则无法统计,沃德通过分析飞回来的战斗机得出来最易导致坠毁的薄弱点;四是处理能力跟不上,就像以前的天气预报太离谱是因为来不及算那些数据。“采样分析是信息缺乏时代和信息流通受限制的模拟数据时代的产物”,作者显然只关注了一部分原因。
从语言的理解上看,什么是全体数据,究竟是“我们需要的所有数据”,还是“我们能收集到的所有数据”,书中的很多商业案例中,处理的只是“我们能收集到的所有数据”,或者说是“我们认为的全体数据”。人对自然的认识总是有限的,存在主义认为世界没有终极的目标。书中举例“farecast使用了每一条航线整整一年的价格数据来进行预测”,而“整整一年”就是一个采样,或者是“我们需要的所有数据”。
从历史的角度看,国外的托勒密建亚历山大图书馆唯一的目的是“收集全世界的书”,实现“世界知识总汇”的梦想,国内的乾隆汇编四库全书,每个收集的过程都有主观因素在里面,而他们当时都认为可以收集全部的书籍,到最后,我们也没有得到那个梦中的全体。
2 不是精确性,而是混杂性
既然我们过去总是在抽样,那本身就是在一个置信水平下,有明确的容错度或者是偏差值。人类永远知道我们是在精确性受限的条件下工作。同时,作者本身也承认 “错误并不是大数据固有的特性,而是一个亟需我们去处理的现实问题,并且有可能长期存在”。那大数据的特征究竟是精确性还是混杂性?
由此衍生出一个问题,大数据的品质如何控制:一、本身就不要求精确,但是不精确到何种程度是需要定义的,否则就乱套了,换个角度,如果定义了容错度,那符合条件的都是精确的(或者说我这句话还是停留在小数据时代?这里的逻辑我没有理顺)。就像品质管理大师克劳斯比提出过零缺陷理论,我一直觉得是一个伪命题,缺陷是一定存在的,就看如何界定了;二、大量非结构化数据的处理,譬如说对新闻的量化、情感的分析,目前对非sql的应用还有巨大的进步空间。
“一个东西要出故障,不会是瞬间的,而是慢慢地出问题的”。“通过找出一个关联物并监控它,我们就能预测未来”。这句话当然是很认同,但不意味着我们可以放弃精确性,只是说我们需要重新定义精确度。之于项目管理行业,如果一个项目出了严重的问题,我们相信,肯定是很多因素和过程环节中出了问题,我们也失去了很多次挽救的机会。而我们一味的`容忍混杂性的话,结果显然是不能接受的。
3 不是因果关系,而是相关关系
这是本书对大数据理论的最大的贡献,也是最受争议的地方。连译者都有点看不下去了。
相关关系我实在是太熟了,打小就学的算命就是典型的“不是因果关系,而是相关关系”。算命其实是对趋向性的总结,在给定条件下,告诉你需要远离什么,接近什么,但不会告诉你为什么那样做。
我们很多时候都在说科学,然而,什么是科学,没有人能讲清楚。我对科学的认识是:一、有一个明确的范围;二、在这个范围内树立一个强制正确的公理;三、有明确的推演过程;四 可以复制。科学的霸道体现在把一切不符合这四个条件的事物都斥为伪科学、封建迷信,而把自己的错误都用不符合前两条来否决。从这个定义来看,大数据不符合科学。
混沌学理论中的蝴蝶效应主要关注相关关系。它是指对初始条件敏感性的一种依赖现象,输入端微小的差别会迅速放大到输出端,但能输出什么,谁也不知道。
人类一旦放弃了对因果关系的追求,也就放弃了自身最优秀的品质:意志力。很多人不愿意相信算命是担心一旦知道了命运,就无法再去奋斗。即使我相信算命,也在探求相关关系中的因果要素。我放弃第一份工作的原因之一是厌倦了如此确定的明天:一个任务发出去,大概能预测到哪些环节会出问题,只要不去 follow,这些环节十有_会出问题。
解析完这三大观点,下面是我对大数据理论的一些疑惑。大数据是目前风行的反馈经济中的重要一环,在金融、互联网行业的应用最为广泛,而这些行业都是大家所认为的高薪领域。很多时候我就在想,所谓无形的手所产生的趋势究竟是不是无形的。比如几家公司强推一个概念,说这是趋势,不久就真的变成趋势了。我们身边活生生的例子就是天猫的双十一和京东的618,一个巨头开路,无数人跟风,自然就生造出购物节,至于合理不合理,追究的意义也不大,因为很多事情是没有可比性的。这和没有强制控制中心的蜂群思维又不一样。
1 数据独裁。个人意志将受制于集体意志,个人的自由在哪里?用大数据预测来惩罚人的行为又确定的违反了无罪推定的原理。
2 所有数据都来源于过去,大数据分析出来的确定性结果是否意味着我们在重复过去?拉普拉斯的决定论已经被认为是错误的,爱因斯坦也说过“上帝不会跟宇宙玩骰子”,但霍金不同意这句话。
大数据心得篇6
本程序以c语言的栈的相关知识为基础,通过控制两个栈(运算数栈和运算符栈)的进出的栈操作,来实现对包含加、减、乘、除、括号运算符及sqrt和abs函数的任意整型表达式的求解运算。
从程序的编写来看,感觉这次自己真的学到了好多,特别是对程序的开发流程。从最初的选定程序,到最终的程序运行成功,让我感到如果是仅仅掌握课本上的知识是远远不能够很好的应用到实际的编程中去的。在这个过程中还需要我们更多的去考虑到实际条件的种种限制和约束。
我在写本程序的过程中也遇到了很多的问题,当然本程序的核心问题就是对两个栈的压出栈操作,需要做优先级判断,并要考虑什么时候进栈,什么时候出栈等操作。我采用了课本上第52-54页讲的通过一个二维字符串数组来控制比较“+-*、()as=”共9个运算符的优先级控制。对异常,如除数为0、被开方数小于0等异常也进行了精心的处理。对操作过程中要用到的y、n、a、s等字符也进行了改进,最终本程序可以不区分大小写就完成相关操作。
总之,经过本次专业课程设计,让我掌握了开发应用软件的基本流程,运用所学编程技能的基本技巧,也让我初步了解了软件设计的基本方法,提高进行工程设计的基本技能及分析、解决实际问题的能力,为以后毕业设计和工程实践等打下良好的基础。相信通过这次的课程设计,我对所学的《数据结构(c语言版)》和各种编程语言都有了一个全新的认识。我也会积极吸取本次课程设计的经验,继续研究数据结构和所学的各种编程语言。
大数据心得篇7
这么多年来,看了很多东西,如今回过头来发现,好像什么都忘了,真是悲剧,所谓读书破万卷,下笔如有神或许是不对的,还是需要下笔勤快,所以决定从这里开始。
这些年对于技术的发展,我是没有跟上,如今发现即便是对于投资,技术对于我们生活的改变太大,而自己身在这个技术浪潮的前沿,还是需要跟上步伐。——前??
大数据这个概念已经提了很久,我也一直疏忽了对于它的理解。看完《大数据时代》,再结合如果工作上对于大数据的理解,顿时发现数据的重要性,以前在这方面的确没有足够的思想意识。
整本书来说,我觉得最关键的三个点是前面几个章节:
1、要总体,不要随机样本:从小对于统计学相关的学习,基本都是从样本出发,理论的基础在于如何随机的足够分散的选取样本,这可是技术活加直觉。而对于大数据来说,要的就是总体,本质上来说,总体样本的确更能准确找到结果。但是对于统计来说,总体的分析增加了数据分析的难度,不仅数据核对不好进行,一旦出现数据污染,准确度就会大打折扣,而且进行数据回溯的时候,也无法准确确认问题,而这一点也是后面相关性上问题;
2、要混乱,而不是精确:这里主要想说明的是希望数据的多样性,尽量将相关数据都收集起来,不管是结构化的还是非结构化的。这样就不可避免的最终结果的不准确性。大数据更多的是从一个总体数据中说明以后概率事件,既然是概率,也就可以理解无法精确。这里有个点的说明,我觉得需要提一下,大数据算法更倾向于“简单”,而不是复杂,这个倒是出乎我的意外。
3、要相关性,而不是因果:从我对于知识获取的过程来说,我是不同意这个观点,从人体对于知识的理解,还是要从因果论出发,没有因果论,就会变成瞎子。而作者的观点上来说,原因可能还是从大数据本身的'非准确性,一旦找到合适的算法,找到相关性,向上追述原因本身就很难。但是从举的示例上看,相关性的确认是一个非常大的工程,基本就是使用排举法,一个一个试。
所以,对于大数据来说,最重要的三点是:
1、数据——得到更多数据;
2、算法——建立更快的算法体系;
3、思维——寻找数据间更多的相关性。
对于数据最终的走向,我同意书中所提到的政府管理的观点,既然都是以“石油”的标准来看待数据,政府统一管理也就是必然的了。而且对于政府来说,掌握更多数据也有利于其管理及维护社会的稳定性。而对于社会道德方面的论述,我不想多说什么,时代发展是不会被道德绑架的。
所以最后,想要建立对于大数据的思维,《大数据时代》还是值得一读,里面的很多示例也非常不错。如人际关系这一块,也是出乎我的意料。
会计实习心得体会最新模板相关文章: