制定教案是我们教学工作中比较复杂的一项任务,没有教案的课堂上是没有效率的,只有制定好教案,我们才能提升自己的教学质量,以下是高中范文网小编精心为您推荐的冀教版小学五年级上册数学教案8篇,供大家参考。
冀教版小学五年级上册数学教案篇1
教学要求:
使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学用具:投影片若干张。
教学过程:
一、激发:
1、口算。
1.2×0.3 0.7×0.5 0.21×0.8 1.8×0.5
1-0.82 1.3+0.74 1.25×8 0.25×0.4
0.4×0.4 0.89×1 0.11×0.6 80×0.05
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留整数
保留一位小数
保留两位小数
2.095
4.307
1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试:
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?
6、专项练习(根据下面算式填空)
3.4×0.91=3.094
积保留一位小数是( )。
积保留两位小数是( )。
7、尝试后练习:
▲p.10页做一做1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
▲判断,并改错.
10.286×0.32=3.29(保留两位小数) 3.27×1.5=4.95 1.78×0.45≈0.80(保留两位小数)
1 0 .2 8 6 3 . 2 7 2 . 0 4
× 0. 3 2 × 1. 5 × 2 8
2 0 5 7 2 1 6 3 5 1 6 3 2
3 0 8 5 8 3 2 7 4 0 8
3. 2 9 1 5 2 4. 9 0 5 5 7 1 2
三、运用
1、p.13页2题
2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?
3.059 3.578 3.574 3.583 3.585
四、体验:
谁来小结一下今天所学的内容?
五、作业:
p.8页1
六:课后反思:
冀教版小学五年级上册数学教案篇2
教学目标:
1、通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
2、掌握用“四舍五入”法截取商的近似数的一般方法。
3、在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
教学重点:
掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:
理解求商的近似数与积的近似数的异同。
教学准备
有关的课件。
教学过程
一、复习引入:
1.按照要求写出表中小数的近似数。(ppt课件出示题目。)
保留整数保留一位小数保留两位小数保留三位小数
2.求出下面各题中积的近似值。(ppt课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
二、探究新知:
1.学习例6。
(1)出示例6题目信息。(ppt课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或ppt课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或ppt课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或ppt课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(ppt课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(ppt课件演示例6精确到“分”的计算过程。)
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(ppt课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(ppt课件演示。)
(3)引导学生交流、概括。(ppt课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
三、巩固应用:
1.基本练习。
完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
2.提高练习。
判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
冀教版小学五年级上册数学教案篇3
一、教学目标
1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。
2、结合具体情境,进一步体会“整数”与“部分”的关系。
二、重点难点
重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
难点:充分体会“整数”与“部分”的关系。
三、教学过程
(一)复习旧知,导入新课
1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗?说说它们分别表示什么意义?
2、今天我们一起来学习《分数的再认识》。
(二)创设情境,学习新知
活动一:分笔游戏,体会单位??
1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)
2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。
3、另找4名同学检查。
4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)
5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)
6、师总结:最初每位同学笔的“整体”不同,也就是单位“1”不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识?
活动二:教材p34说一说。
1、带着新的认识,我们来判断两个小朋友看的书一样多吗?
2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)
4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)
5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:“我俩吃的一样多”。李晓阳说:“我吃得比你多。”他们谁说得对呢?
(三)巩固练习
1、教材p34画一画。
2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
四、板书设计
分数的再认识
整体不同,相同分数表示的数量也不同。
整体相同,相同分数表示的数量也相同。
五、教学反思
本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。
冀教版小学五年级上册数学教案篇4
教学目标
1、在动手操作的过程中,让学生进一步认识分数,体会标准不同,分数表示的意义也不同。
2、在具体操作活动中,发展学生的数感,体会生活中处处有数学。
3、结合具体的情境,进一步体会“整体”与“部分”的关系。
教学重、难点:体会一个分数对应的“整体”不同,所表示的具体数量也不同。重点就是部分与整体的关系 教学过程:
活动导入
现在大家猜个谜语:母子两边分…… (学生回答:分数)
今天我们就再来认识分数 (板书:分数的再认识)
2、复习导入,出示图形:
提出复习要求:仔细观察这3个图形,说出这3个图中阴影部分是什么分数,它们各表示什么?
(1)图1表示把这个图平均分成了两份取了其中的1份,用分数2分之1来表示。
(2)图2表示把这个图平均分成了三份取了其中的1份,用分数3分之1来表示。
(3)图3表示把这个图平均分成了四份取了其中的1份,用分数4分之1来表示。
(通过让学生说分数,认分数,说分数含义的过程,了解学生以有知识的起点。)
3、他们的回答都非常准确,说明他们对以前的知识掌握的很扎实,老师想看看今天大家的学习效果,有信心吗?
二、活动引入新课学习
1、老师这儿有三份圆片,你们能从每一份中分别拿出全部的1/2吗?
提出观察要求:其他同学认真观察, 你们发现了什么现象?能提出问题吗?
(在这里要强调各自是把谁平均分了,学生分别拿出的是6片、4片和3片。)
( 学生可能的回答)
(1)都是1/2,怎么拿出的片数不一样?
(2)为什么三个同学拿的数目不同?
2、小组合作活动
提出活动要求:为什么他们三人都是拿全部圆片的1/2,拿出的片数却不一样多呢?
请大家先自己想一想,为什么会是不一样的,然后小组交流一下。
(1)学生借助学具独立操作
(2)小组交流
(3)学生代表汇报
师总结:同学们都认为每份的总片数不一样,所以三个同学拿出圆片的片数不同。那也就是整体“1”不一样了。
验证:现在请刚才的3位同学把所有的圆片拿出来,告诉同学们你们各自的数分别是多少,它们的1/2又是多少?这时要乘热打铁让学生举例说明什么是整体“一”。并举例说明,比如,一堆煤,一把铅笔,一个苹果等, 让学生自己总结出单位1或整体1 。(通过组织学生交流,在比较中初步体会“整体”与“部分”的关系,体会整体不一样多,所以分数表示的具体数量也不一样多,强调平均分 ,深化对分数的理解。)
3、总结归纳
(1)原来分数还有一个奇妙的特点,你对它是不是又有了新的认识?
(2)学生总结:(能表达出以下内容就可以)一份圆片的1/2表示的都是把一份圆片平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同,所以1/2表示的具体数量也不一样。单位“1”可以是一个物体,可以是一些物体,可以是一个计数单位 ,学生没学过 把多个物体看作“1”这部分应有所强调 ,这里可以让学生依据自己的生活经验和原有知识来理解单位一或整体一 。这里要让学生明确分数不像以前学的数那样很多情况下它不是一个具体的数字,而是两个数间的关系就可以,不一定要概括出什么语??
四、理解应用
1、为了表扬同学们对刚才所学知识的态度和效果,老师给班级读书角买了2本书。出示挂图:
师:淘气和笑笑都看了这本书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
学生汇报:因为的书厚薄不同,所以两人看的页数也不同。(整体“1”不同,分数表示的量也不同。)
2、阅读教材34页的“画一画”
画出每个图形的4分之1 ,并在小组内交流,说说为什么这样做?(学生总结)
提问:为什么4个方格可以用4分之1表示,1个方格也可以用4分之1表示呢?
(学生可能的回答)
生a:把4个方格平均分4份其中的一份就可以用4分之1来表示。
生b:我把1个方格平均分成4份其中的一份也可以用4分之1来表示,只不过这个一份小一些。
五、巩固练习
1、指导阅读:书上第35页第1题,用分数表示涂色的部分。
独立完成,指名回答。 (简单复习分数的意义,可以根据实际情况让学生说出1~2个图形所表示的“整体”与“部分”的意义。)
2、学生独立在书中完成教材第35页第2题。(老师巡视检查)
3、出示教材第36页第5题,在交流中请学生说说理由。(本题主要是培养学生的估计与推理能力,发展学生数感。如果学生遇到理解困难,可以借助事先准备的图形和小棒在组内演示解决,最后由学生代表汇报演示小组讨论的结果。)
4、拓展延伸 小组合作完成36页第6题
思考:今天你学会了什么?(通过练习,巩固基本知识和技能,加深对分数意义的理解。培养学生的数感,体会数学与生活的联系。)
5、总结汇报:相同分数所表示的具体数量不一定相同,而这一切都取决于整体的大小。分数即表示一种关系又表示具体数量 , 分数只有带上单位才是一个具体的数 (引导学生梳理知识,体会用分数描述生活中事物的乐趣)
板书设计:
分数的再认识
相同分数所表示的具体数量不一定相同,而这一切都取决于整体的大小。
12片 1/2 6片 8片 1/2 4片 6片 1/2 3片 结合线段,数形结合
冀教版小学五年级上册数学教案篇5
教学目标:
(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。
(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。
(三)培养学生养成良好的学习习惯,提高学生的计算能力。
教学重点:
掌握整数、小数四则混合运算的运算顺序。
教学难点:
提高学生计算正确率以及约等号的正确使用。
教学过程:
一、复习准备
1.口算
12+0.12=7.2-0.2= 3.5÷0.35=
2.95+0.05= 5-0.6= 2.8÷0.14=
8÷12.5= 1.2+2.8-3.99= 4×1.72=
3.74+6.26= 4.5×6= 0.25×4÷0.2=
2÷4=20×0.2=20.75-9.5=
3.5×8×0.125=
2.提问
(1)我们学过哪几种运算?
(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)
(3)整数四则混合运算的顺序是什么?
二、学习新课
1.学习例1:3.7-2.5+4.6=3.6×6÷0.9=
(1)思考:以上两题中分别含有什么运算?运算顺序怎样?
(2)学生试算后订正。
3.7-2.5+4.6
=1.2+4.6
=5.8
3.6×6+0.9
=21.6÷0.9
=24
(3)小结运算顺序
①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。
②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)
③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)
2.学习例2:35.6-5×1.73= 6.75+2.52÷1.2=
(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?
(2)学生计算后订正。
(3)小结。
以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?
讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
(4)练习:先说出运算顺序,再算出得数。
①p37“做一做”;②3.6÷1.2+0.5×5。
思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)
②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)
教师介绍:小括号“( )”是公元17世纪由荷兰人吉拉特首先使用。中括号“[ ]”是公元17世纪首次出现在英国的互里士的著作中。
小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)
3.试做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=
(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
(2)学生试做
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解
在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。
要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)
学生继续计算后,订正
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
≈2.12×5
=10.6
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
≈0.42
提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)
4.小结
(1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)
(2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)
(3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
三、巩固反馈
1.p38:做一做。
2.p40:1①②,2①②。
(1)说出运算顺序;
(2)计算并且验算;
(3)订正并小结验算方法。
验算方法:①原式验算;②互逆验算;③交换验算。
3.判断下面各题,哪些是对的,哪些是错的,并说明原因。
(1)0.8-0.8×0.7=0( );
(2)1.6+1.4×2=6( );
(3)50-3.9+6.1=40( );
(4)20÷2.5×4=32( );
(5)9.6+0.4-9.6+0.4=0( );
(6)4.8×2÷4.8×2=1( )。
4.p40:4。先计算填空,再列出综合算式。
5.课后作业:p40:1③④,2③④,3。
冀教版小学五年级上册数学教案篇6
教学要求:
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教学用具:投影、口算小黑板。
教学过程:
一、引入尝试
1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书: 0.8 ×1.2)
2、尝试计算
师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?
师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?
如果能,应该怎样做?(指名口答,板书学生的讨论结果。)
示范:
1. 2 扩大到它的10倍 1 2
× 0. 8 扩大到它的10 倍 × 8
0.9 6 缩小到它的1/100 9 6
3、1.2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。) 想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。
师:请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)
(2) 引导学生观察思考。
①你是怎样算的?(先整数法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)
③ 计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)
通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3) 根据学生的回答,逐步抽象概括出p.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
(4)专项练习
①判断,把不对的改正过来。
0.0 2 4 0.0 1 3
× 0.1 4 × 0.0 2 6
9 6 7 8
2 4 2 6
0.3 3 6 0.0 0 0 3 3 8
②根据1056×27=28512,写出下面各题的积。
105.6×2.7= 10.56×0.27= 0.1056×27= 1.056×0.27=
三、应用
1、在下面各式的积中点上小数点。
0 . 5 8 6 . 2 5 2 . 0 4
× 4. 2 × 0 . 1 8 × 2 8
1 1 6 5 0 0 0 1 6 3 2
2 3 2 6 2 5 4 0 8
2 4 3 6 1 1 2 5 0 5 7 1 2
2、做一做:先判断积里应该有几位小数,再计算。
67×0.3 2.14×6.2
3、p.8页5题。
先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、体验
回忆这节课学习了什么知识?
五、作业 :p8 7、9题。p9 13题。
冀教版小学五年级上册数学教案篇7
教学内容:
课本第39页例1、例2.
教学目标:
1、使学生理解第一级运算和第二级运算的含义。
2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。
3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。
4、培养学生认真严格的态度。
教学过程:
一、复习铺垫
(1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)
(2)填空回答。
①在一个算式里,如果只有()或者只有(),要从左往右依次计算。
②在一个算式里,如果有(),又有(),要先做()后做()。
(3)在一个算式里,如果有括号,要先算()。
二、新授
1、出示课题:整数、小数四则混合运算。
2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。
3、教学例1.
(1)板书例1:3.7-2.5+4.63.6×6÷0.9
然后设问
①这些算式里有哪些运算?
在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
②这两个算式的运算顺序怎样?
③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。
根据学生回答,改变复习填空①的叙述。
④再概括一点讲,这句话可以怎样叙述?
根据学生回答,改变复习填空①的叙述,出示教材结语。
(2)学生完成例1的计算。
4、教学例2.
(1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问
①算式里含有几级运算?
②运算顺序怎样?
根据学生回答,改变复习填空②的叙述,出示教材结语。
(2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)
(3)完成例2下面的“做一做”习题。
5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。
三、巩固练习。
1、(1)填空。(出示,学生口答)
①加、减、乘、除四则运算统称为()。
②加法和减法叫做第()级运算,乘法和除法叫做第()级运算。
③一个算式里,如果只含有同一级运算要从()计算;如果含有两级运算,要先做第()级运算,后做第()级运算;如果有两种括号,要先算()括号里面的,再算()括号里面的。
2、课本第39页做一做。
四、作业。
练习十第1、4题。
冀教版小学五年级上册数学教案篇8
教学内容:
教材p32例6及练习八第1、2、3、8题。
教学目标:
1.知识与技能:能理解商的近似数的意义。
2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。
教学重点:
掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
教学难点:
根据题意正确求出商的近似数。
教学方法:
注重新旧知识的迁移,引导学生自主学习、总结。
教学准备:
多媒体。
教学过程:
一、复习导入
复习旧知:(出示如下题目)
1.用“四舍五入”法将下面的数改写成一位小数。
8.7693.45212.7118.64
2.计算下面各题,得数保留两位小数。
2.43×4.67 12.15×3.41
订正答案,并通过问题:你是用什么方法求这些数的近似数?
(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)
引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)
二、互动新授
1.出示教材第32页例6情境图。
阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?
引导学生自主列算式,并试着计算:19.4÷12
学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?
通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。
教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)
然后再引导学生想一想:算到分和角时分别需要保留几位小数?
(算到分要保留两位小数,算到角就要保留一位小数。)
师引导学生思考并讨论:除的时候应该怎么算?
小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书
2.提问:说一说如何求商的近似数?
让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。
3.引导学生比较求商的近似值和求积的近似值的异同点。
小组讨论后发言:相同点:都是用“四舍五入”法求近似数。
不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。
师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。
三、巩固拓展
1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。
四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?
引导学生归纳
1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。
作业:教材第36~37页练习八第1、2、3、8题。
板书设计:
商的近似数
求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
会计实习心得体会最新模板相关文章: